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A Vlasov Description of the Gridded
Gap-FElectron Flow Interaction

SEMYON A. KHEIFETS, JOHANN JAEGER, anD SIMON S. YU

Abstract —Self-consistent solutions of the system of Vlasov equations
are found for the case when the electric field in the gap does not depend on
the longitudinal coordinate. The solution is valid: a) for an arbitrary
nonrelativistic particle distribution in velocity and time at the gap entrance,
b) for any gap length, ¢) for any beam current, and d) for a broad class of
field dependences on time. In the region of applicability of the small-signal
approximation (small beam current, small transit angle of the gap), the
solution derived reproduces the results of the small-signal approximation.
Numerical results for the input klystron cavity and for an idler cavity are
given and compared with the calculations in small-signal approximation.
Possible applications of this formulation are discussed. In particular, we
argue that the Vlasov description provides a suitable framework for devel-
oping one-dimensional models of a multiple-cavity klystron. These models
will be valid for large signals, and are useful therefore for predicting the
performance of high-power klystrons.

1. INTRODUCTION

HE PRESENT STUDY is motivated by the modeling

of high-power klystrons. The two basic components of
a klystron are the resonant cavities and the drift spaces.
This paper addresses only the first of these two compo-
nents. Modeling of the drift spaces is deferred to future
work. In one particular case considered here of the drift
space between the first (externally powered) and the next
(idler) cavities, the ballistic approximation is used for the
particle motion. The formulation is not restricted to
klystron modeling, but is applicable to any problem involv-
ing the interaction of an electron beam with a resonant
cavity.

While the theory of klystrons has been worked out in
detail in the small-signal limit, the problem remains largely
unsolved when the signals are large. In particular, the
hydrodynamic models of electron beams used to derive the
small-signal theories fail when particle trajectories cross
each other. In this paper, we employ a Vlasov description
of the electron beam to study the klystron problem. In the
Vlasov formulation, we follow the evolution of the electron
distribution function in phase space. The general frame-
work can naturally accommodate particle crossing, and the
beam dynamics are accurately described even when the
signals are large.
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While the Vlasov formulation is equivalent in principle
to a particle simulation, the mathematical structure of the
Vlasov equations makes it relatively easy to build in the
steady-state condition. Since in many klystron problems we
are interested mostly in the steady-state solution, the Vlasov
description is very convenient. This is an advantage that a
particle simulation does not share.

The self-consistent solution of the system of Vlasov
equations is found under the following assumptions:

a) one-dimensional (longitudinally) nonrelativistic par-
ticle flow,

b) electric-field uniform in the longitudinal coordinate
(gridded gap).

The solution is valid a) for an arbitrary particle distribu-
tion of the flow entering the gap, b) for any gap size, c) for
all beam intensities, and d) for a broad class of time
dependences of the electric field in the gap, although we
will be studying in detail the special case of a resonant
cavity with a single dominant frequency.

In Section II, the problem is formulated in terms of the
Vlasov equations {1]-[3]. In Section III, we present the
solution of the Liouville equation for a given gap field.
Solutions both for the initial value problem and for the
boundary value problem are given. At the end of the
section, we also write down the gap field excited by a
current source. The results of this section are combined in
Section IV to produce a self-consistent solution for the
Vlasov equations. In the limit of a small beam intensity
and/or a small electric field, the solution gives the same
results as the small-signal theory based on the hydrody-
namic beam models. This is shown in Section V for the
input klystron cavity and in Section VI for the second
(idler) cavity where the expressions for the gap voltage are
derived in the small-signal approximation. We have also
derived a general solution in the limit of small gap size
(Section VII). The last sections contain a numerical exam-
ple, comparison with known approximations, and some
conclusions as well as a discussion of possible applications
of the suggested solution to the klystron problem. The
results of the present paper in greater detail can be found
in [4].

II. THE VLAsOV EQUATIONS

The most general and- exact description of the electro-
magnetic interaction of a particle flux with environment is
given by a system of equations describing the evolution of
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the particle phase space distribution function and the
electromagnetic field produced by particle charges. This
system of equations is referred to usually as the Vlasov
equations. For the nonrelativistic one-dimensional problem
considered here, the Vlasov equations are as follows.

Consider the motion of an electron in the gap in the
z-direction with the velocity v = dz /dt

@—iE(t).

dt m @)
Here, E(¢) is the z-component of the electric field assumed
to depend on time only. The physical realization of such a
field takes place in a gridded gap, for example.
The first two integrals of this equation are

v(t)=%j:tE(t’)dt’+ v, (2)

and
2(1)=z0+v-(1=to) = [(#= 1) E(t) dr'. (3)

The evolution of a flux of electrons inside the gap can be
described by a distribution function ¢ of time ¢, coordi-
nate z, and velocity v: ¥ = ¢(z, v, t). The continuity equa-
tion in the phase space z, v is called the Liouville equation.
In our case, it looks like (&£ is an operator)

e (4)
Notice that v and z in this equation are considered as
independent variables.

The electric field E(¢) in general can be produced by the
charges and currents of the flux, taking into account the
environment as well as by external sources. Introducing
the axial component of the vector potential A(7, ¢) and the
scalar potential ¢(7,7), we can describe the electromag-
netic field by the following Maxwell equations:

_ € 9 _
Py = +—E(1) 5 =0.

1 0%4 38%4 4«
— L L 22T (F ¢ 5
c® ot? 9z* c ( ) ()
4 193¢
dz c t—O (6)
__ 99 104
E==, "% a (7)

The axial current density j(7,¢) in (5) in turn can be
expressed as a sum of external current density j.,, (pro-
duced for example by an external RF generator) and the
current density of the flux itself. In our case, we assume for
simplicity for the electron current density a uniform depen-
dence on the radial distance from the axis in the interval
O<r<b

J(zr, ) =g(r)I(z, 1)+ jex (8)
o
I(z,t)=ef_idvugb(z,u,t). (10)

The system of equations (4)—(10) are the Vlasov equa-
tions. The solution of this system satisfying all the neces-
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sary initial and boundary conditions is the self-consistent
solution of the problem. The search for such a solution and
the study of its properties are the subject of the present

paper.
IIL

We solve first the Liouville equation (4) assuming for the
time being E(¢) as a given function of time. It is known
that any function of the integrals of motion is the solution
of the Liouville equation. Hence, the function

1P(Z,U,l‘)='$0(2— U'(t-t0)+7_il_‘/t:(t,—t0)E(t/) dl’;

SOLUTION OF THE LIOUVILLE EQUATION

€ t , ,
-v—;;ftOE(t)dt)

is a solution of (4). ¥,(z,v) corresponds to the initial
distribution at ¢ = ¢,. It is easy to check by direct substitu-
tion that this function indeed satisfies (4). We will not do
this here since we are interested in the solution of the
boundary value problem rather than the initial value prob-
lem.

Suppose now that, at z = z,, the distribution function is
given for all times and velocities

Yo=1¥o(0,1). (11)
We are interested now in finding a solution ¥/(z — z4, v, t)
of (4) which goes into (1) for z — z,. This solution will
describe the evolution of ¢, in z, v, and ¢. In particular, it
will give us the distribution function ¥ (/, v, t) at the exit of
the gap z=z,+ /.
The aim is achieved in the following way. Introduce first
the implicit function ©(z — z,,v,¢) as a solution of the
equation

F(z—24,0,6,8)=2—2,—0-(1—6)
e ! r__ ’ [
+—n—1/e(t B)E(¢)dt'=0 (12)
which satisfies the condition

0(0,v,t)=1.

Introduce next the function

e H
V(iz~z,,0,t =v~—f
( 0 ) m O(z—z9.0,0)

(13)

E(t)ydtr'. (14)

From (3) it follows immediately
V(0,v,t)=0. (15)
Then
ll/(Z, v, t) = \!/O(V(Z —Zp, U, t)? e(Z ~Zp, U, t)) (16)
is such a solution of the Liouville equation (4), which goes
into the boundary value (11) when z — z,. To prove this,
note first of all that

Py = g—;ﬂ LV + %ye.

Then it is easy to see that

LV = %E(e)-ge.
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Therefore the only thing we have to show is that
LO=0. 17)
Indeed, if (17) is true then #Y =0 and (13) and (15)

provide that ¥|,_, =y(v,?). To prove (17), find LF
(which is 0 since F=0)

LF=V-£20=0.

Hence, (17) is true. In the particular case of a harmonic

electric field
E,(t)=E,cos(wi + ¢)

(18)

formula (14) gives
eEQ . .
Vi=vo——— [sin (@t + @)—sin (w0, + ¢)]. (19)
0, satisfies the following equation (from (12)):

E
z—zo—v(t —Oh)—ia%[cos(wt+ ¢)—cos(wO, + )]

E
+ -fzg-(t —0,)sin(wr+¢)=0. (20)
The solution (16) possesses an important feature of
periodicity. Namely, if (v, t) and E(¢) are both periodic
in time (T is the period)
Yo(v, 8+ T) =y (v,1)
E(t+T)=E(z)

(21)
(22)
then

V(z,0,t+T)=y,(V(t+T),0(t+T)+T)

=¥ (V(1),6(2)) =¢(z,0,1) (23)

i.e., it is also periodic.

The correctness of this statement is very easy to see in
the simple case of the harmonic electric field with w =
2w/T. In this case, (20) is invariant under transformation
t—t+T, ©—>06+T and so is (19). The proof for a more
general periodic function E(z)=X, E, cos(nwt+¢,) is
more elaborate and we will not give it here.

The constants E, ¢ in (18) are to be found self-con-
sistently from the solution of the Maxwell equation with
the current density as a source of the field defined in (8)
and (10). The key result is an impedance relation stated
below. A detailed derivation is presented in [4].

Define the gap voltage first harmonic for the fre-
quency

Uy=—KE(r)) (24)
where (E|(r)) is the average electric-field harmonic over

the beam cross section { E;(r)) =1/wb*frdrde E,(r) and
the gap impedance on the frequency

U
=y @)

where (I,) is the first harmonic of the full current aver-
aged over the gap (/ is the gap length)

(hy=17 [laz(2).

Z,

(26)

469
Here
L(z)= L 2'”/wah‘e"“”[(z, t) (27)
277 [}
is the first Fourier harmonic of the current 7(z, t).
For the resonant cavity
R/Q)- |
7o /ci) 2 8
1+iQ| 4 — —0)
Q( H S

where (R/Q), Q, and f, are the shunt resistance, the
quality, and the proper frequency of the cold cavity.

IV. SELF-CONSISTENT SOLUTION OF THE VLASOV
EqQuATIONS

We can rewrite (25) in the following way:

=2 [4n(2). (29)
It is more convenient to consider the current due to elec-
tron flow separately from other possible currents, e.g., the
current arising from the external generator.

Consider for example the first klystron cavity. Assume
that the cold cavity is excited by an external RF generator.
Then it is convenient to rewrite (29) in the following form:

Z, 1!
E1=Elcxt__l_21_./(;d211(z) (30)

where I, is now the first harmonic of the electron flow
current I(z, t) defined in (10) and which in turn depends
on E,. E,,, is the first harmonic of the field excited in the
cold cavity by an external generator. It can be equal to zero
in the particular case of an unexcited cavity (for example,
the second klystron cavity).

The complex equation (30) constitutes two transcenden-
tal equations for the amplitude E, and the phase ¢ (or for
the real and imaginary parts) of the first harmonic of the
field. The solution of these equations provides the self-con-
sistent field E, = E,cos(w? + @) ((18)). Substitute this field
back into the solution (16) for the distribution function.
One gets now the self-consistent solution of the Vlasov
equation which satisfies the boundary value at z = z,.

As an example, let us assume for the initial electron flow
a dc current with no velocity spread

I
¢0(vat)lz=zo=zv;.08(v_vo) (31)

where I, is the dc electron current, and v, =2eV,/m is
the initial velocity due to the dc gun voltage V. At this
point, it is convenient to introduce the following dimen-
sionless variables:

x=(z=-2y)/l, 0<xxl (32)
u=v/wl, —o< UKo (33)
T=wt+ @ (34)
To=wO + ¢ (35)
k=eE,/muwl. (36)
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Fig. 1. Phase trajectories of an electron with the dimensionless velocity

#=1 entering the gap with the dimensionless field strength k=0.2.
The ratio u/k is plotted versus x/k (the ratio of the dimensionless
coordinate x to the field strength k) for the different values of the field
phase .

According to (16), the distribution function for any later
coordinate and time is in the new variables

I
Y(x,u,7)= jS(u —ksinT+ ksinty, —uy)  (37)
0
where u,=v,/wl and the function 7,=7y(x,u,7) is de-

fined by equation

x —u(7—17)+k[cosT —cos Ty + (7 — 7)sint] =0.
(38)

From the distribution function (37), one can find the
beam density current

I
I(x,7)= u—(:)fw duud(u— ksint+ ksint, — u,)
— oo

u(r)

=g K [7 = 7 (@)]cos (@)

(39)

where # = #u(7) is the solution of the equation
u+ ksinty (%) =uy+ksinr. (40)
The first harmonic of I(x, 1) is

I, 2 dra(r)e ™™
I — 20 19 .
(%) o j(‘) lug + k[ — 75()]cos 7 ()]

(41)

Calculate now the average over x of this current and
substitute into (30). Note that E; = E;e'®/2 and E,,, =

EOext/2

2Z, el 1
k=kgye v ——"—2— ["dx
ot 1 2ame? -/(;
.j-zw dra(r)e (42)
o |ug+ k(T —7)cosm
where k,,, = eE,,,/mw’l. The complex equation (42) is

equivalent to two transcendental equations which define
the amplitude E, and the phase ¢ (in respect to the
external field) of the field in the gap.
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x/k

Fig. 2. The same as in Fig. 1 but for the field strength parameter
k = 0.25. The onset of the particle crossover can be seen for large x /k.

x/k

The same as in Fig. 1 but for the field strength parameter
k = 0.33. The crossover is fully pronounced now.

Fig. 3.

Figs. 1-3 are the phase plots of u/k versus x/k for
k=0.2, 0.25, and 0.33, respectively, for different values of
the time parameter 7. One sees the onset of the crossover
of the particle trajectories for the large gap voltage (Fig. 3).

V. SMALL-SIGNAL APPROXIMATION:
THE INPUT KLYSTRON CAVITY

It is instructive to study the previous results in the limit
of a small electric field and to compare them with the
known results from the small-signal theory.

In the small-signal limit, the lowest power of the param-
eter k should be retained in all expansions in power series.

In variables (32)-(36), equations (19) and (20) for z=
V,/«d and 7, look like

#=u—ksint + ksinT, (43)
x —u(r—19)+k(cosT —cos 1y + 7sinT — 7y sinT) = 0.
(44)

The solutions of (43) and (44) to the first order in k are

(45)

ﬁ=u—kﬁn7+km%f—%)

== L2 E[COS(T—i)—COST— 1sinfr]. (46)
u u u u
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The terms independent of k here give the ballistic ap-
proximation. The last terms in (31) and (46) represent the
influence of the electric field.

Let us assume for simplicity that the distribution func-
tion of the electron flow on the entrance of the gap is (31).

A. Coupling Coefficient

Let us first of all find the expression for the coupling
coefficient p as it follows from our solution. One can
define p as the ratio of the average kinetic energy change
to the maximum of the energy gain in the gap [5]. Calculate
first the average (u?) as the function of x

I duu28[u—ksin7+ksin(7- %)—uo]

Nl
o / dus[u~ksim+ksin(7-—;5)—u0]
— o0

4 (47)
To the first order in k for x =1
(u?y, =u} +2kuo[sin1- —sin(r - ui)J (48)
0
From here we get (¢ denotes 7 +1/2u,)

_(u?y,—ui sing
" 2kcos¢ 6

p (49)
where 0 =1/2u,= wl/2v, is the half of the gap transit
angle.

B. Beam Loading

Now, let us consider the beam loading by the electron
flow as it follows from our solution. We need now the
expression for the beam current density in the small-signal
approximation. The charge and the current densities both
can found by integration of (37)

jZ)l f:odu8[u-— ksin7+ksin(7—- %)—uo]

p(x,7)=~
(50)

, :
I(x,7)= u—(:)fj;duuﬁ[u— ksinT + ksin(*r— %)_“0]-
(51)

Performing the integrations, we find to the first order
in k

I(x,7) =10{1+ uﬁo[sinf—sin(T_ i)]

Up

- %cos(r—uio)} (52)

I, kx x
p(x,7)= il {1— ;z-cos('r - uo)}'

It is easy to see that (52) and (53) satisfy the continuity

(53)
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equation

9p 10T

37 " ol 9% (34)

As one sees from (52) in the small-signal approximation,
the current density besides the dc component contains only
the first harmonic. Expression (52) can be obtained con-
versely by expanding expression (39) in the power series in
parameter k.

Using the definition (17), the first harmonic of the beam
current density is

w K (. X x x
ILi(x)=Ie¥>—|sin———cos — —i
2u, ug U, ug

+icos 2 + i sini). (55)
Uy Uy Uy
This expression is the same as one obtained from formula
(2.1) of [5], assuming E, = const. It also coincides with the
corresponding expression for i, in [6].
Let us rewrite (30) in variables (32)—(35)

E=2 [11m -f 1dx11(x)]. (56)

Here, I,,,, is the first harmonic of the external current
exciting the cavity. Substitute now (55) into (56) and take
into account that E, = Ege'?/2, I} ... = Iyex /2. Then

YA

- Z
Ey="tIy e % — —lilok(B +id)

, (57)

where

B= fl/uodo(sino —@acosg) = 40sin0(—s-m—0 —cosa)
0

8
(58)
A=-— fl/uoda(l—cosa — osino)
0
sinf
=‘40cos0(T —cosﬂ). (59)

Here;, 0 =1/2u,= wl/2v, is half of the transit angle for
the gap. Solving (57) in respect to E, (see definition of & in
(36))_, one finds

IOexte~i¢
Eo= : (60)
1{—1—+ el,(B +iA)

Zy mw?l?

Substitute now expression (18) for Z,

R Iy e
E0= ( /Q) Oeite ' ) (61)

| +,-(1 _ fg)+ I(R/Q)(B +id)
Q fo f 462

From formula (61) immediately follow the usual expres-
sions for the loaded quality Q, and the shifted frequency
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fl Of the gap
N I R 1 i
1 1 0( /Q) Sln0(81n0 9>

0, 0 2V, ] ]

(62)

I,(R/Q) coso(sin0 )]
=f11— —cos@||. (63
o= i1~ /2D eont s (63
VI. SMALL-SIGNAL APPROXIMATION:

SECOND (IDLER) KLYSTRON CAVITY

Let us now proceed to the second (idler) klystron cavity.
We want to study how it is excited by an electron flow
perturbed by the action of the field in the first cavity and
bunched in the drift tube with the length d; between the
first and the second cavity. We neglect in the present
formulation the debunching effects of the space charge in
the drift tube and use the ballistic approximation for the
particle motion inside the drift tube.

We use the solution for the field in the first cavity &, to
obtain the distribution function of the electron flow at its
exit. For the initial distribution function defined in (31), we
have (see expression (45) for x =1)

1 1
‘h,om(vy t) = Euloﬁ[u —kysint + k4 sin(q-l — ;)_ ”0]

(64)
where ™ = wlf + @, u=v/wl, uy=uvy/wl. k =
eE,/m&’l; and ¢, constitute the solution of (42). The
distribution function at the entrance of the second cavity is
obtained from (64) in a ballistic approximation

1, d,
Yo m(0, t)——8[u—k s1n('r1 ”; )
1
L+d

lu—lll)—uo]. (65)

To obtain the distribution function at any place x =z /|
inside the second gap (with the length /,) according to
(16), one should substitute in (65) v -V and ¢ — 6. Or, in
the variables u, 7 (see expressions (45) and (46))

+klsin(71—

. . x
u—>u2=u—kzsm72+kzsm(frz——u—) (66)
x+k2 ( x) k, kyx
T, =1,——+—cos|1T,— = |~—=cosT, — —=—sinT,.
02y 2 u u 2 2 2

(67)
Here, 7, = wt + ¢, and k, = eE, /mw?*l;. k,, ¢, should be
found from the solution of (42) for the second gap, in
which one should put &, = 0. In the linear approximation
in k, and k,, we get

1 ' . . X
xp(x,u,'r)=;l—l°;6[u—k2sm'rz+k2sm(72—-;—)

xl; + dl)

—klsin('err(pl—(pz— I
1

xll+ll+d1) u]
Gl T S B

+klsin('r2+<p1—q>2— L

(68)
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The charge (50) and current (51) densities both can be
found from (68)

I, {1__cos EAN ky(xl,+d;)
uwl; ul

2
Liug

(P(X, 72) =

xl,+d,
" Cos 72+(P1_‘P2—‘ﬂ0_
_ky(xl + 1 +dy)
Lu
xl,+1,+d
-cos(72+<p1—tp2~—L-l—1;1(-)—1)} (69)

k, x
s1n'r2 - u— sin Ty — u—

ks,
I(x,7)= 10{1+
0 0

N k, . N xl +d,
o S| T, T Q@) Lug
xl+1,+d; )

ki . N
U, s 7, + @~ @, Lug

kyx X
——5-cos|m——

Uy

k (xl;+d;)

lluO

xl + dl)

.COS ( Tyt @@y — Iy

k(x4 4y)
Lug

xll+ll+d1)}. (70)

'cos(72+(pl—<p2— lluO

Expressions (69) and (70) satisfy the continuity equation
(54). Substituting (70) into (42), one obtains for U, =, E,
and ¢, the following complex equation:

el U™ (B, +id;,)

ely(B, +i4,)
ma?l,2

Py —
U2€ 2 =

(71)
2
mw-l 12[22 +

where U,e’#: is the first gap voltage, Z, is the second gap
cold unloaded impedance, B, and 4, are the coefficients
defined in (58) and (59), respectively, in which § should be
substituted by 8, =/, /21 u,. The coefficients B, and 4,
are defined as follows:

d, d
B, =2cos (20 ) —2cos: ——
lug liug

d d, d d
+(26, + — |sin(26, + — |- —Lsin —
Lu, Lu,

d, d;
—2cos(202+—+L)+2 0s(—+i)

Lug  u, Luy  ug
d, d;
—126, +——+l sin|28, + —— +l
huy,  u, Luy  u,

d, 1)\.{4d 1
+ |+ —|sin| 7+ —
Luy, ug Luy  ug
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d d
A12=2sin(202+—+i)—zsin(—1—+ l)

Luy  uy Luy * uy

—d—+l)cos(20 +d—+~1—)

Lug  ug Lug  uy

(d 1) (d1 1)
+| 57—+ —|cos| +——+ —
Luy, u, Luy  uy

—Zsm(20 + — 4 )
Liug

~[28,+

d,
+2sin ——
lLiug

d, d, d
—;—)cos(20 +—)————1—co

Liug Liug Lug

dy
Luy”

(73)

In deriving expressions (69)—(70), in addition to the
small-signal approximation conditions k;/u, <1 and
k,/uy<1, we assumed also that the length of the drift
tube is small enough so that the inequality k,d, /uyl; <1 is
still valid.

Expression (71) has a simple meaning. Namely, the first
harmonic of the current at the entrance to the cavity plays
the roll of the external excitation current, while the first
harmonic of the current produced by the gap voltage loads
the cavity by changing its parameters exactly in the same
way as it is described by expressions (62) and (63).

VIL

In this section, we derive an analytic solution to the
Vlasov equation in the limit of a narrow gap. The expan-
sion is not restricted to small signals, but the result is
consistent with small-signal theory in the proper limit.

The assumption of a narrow gap allows us to expand the
distribution function into a Taylor series. We have in
general

NARROW-GAP APPROXIMATION

=]

l ™y
n' (92

¥(z )—

(z —20)" (74)

For a narrow gap, the solution is given by the first few
terms of the series. We will work out the example of an
initial cold distribution with

4o(0.1) = 228(0 - 1) (75)

for which the general solution is given by

_ IO t R '
¢(z,u,t)_;l£a(v—/ea(t)dt UO) (76)
where O is given by
z—zo=0(t=0)= [(r=O)a(t)dr  (77)
o

and a(t)=eE(t)/m (see (12)).. We will perform the ex-
pansion of (76) up to n=3. The first term in the series
(n=0) is given of course by Y (v, t) as defined in (75). To
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obtain the n =1 term, we need to evaluate

W _ a\lfo
2, a(6) %2 3 e (78)
Differentiating (77), we obtam
S =—vt [a(r)ar. (79)
o

The coefficient of the n =1 term is then given by
a I '
2 == 228(o—vp)al)/0,
ev,

dz
The coefficient of the n =2 term is proportional to the
second derivative of y and is evaluated to be

= n=1. (80)

20

Uo)

— 8//(

+ s'(v—vo)[“'lf—z’)— “—U(jl] n=2. (81)

Note that 8’ refers to the derivative of the delta function
with respect to velocity, while a’(¢) is a derivative of the
acceleration with respect to time. A superscript with »
primes refer to the nth derivative. Finally, the'n = 3 coeffi-
cient is evaluated to be

evo)33¢ a’ aa’  a
Do) T¥ | 57 (0—1p) L +38"(0— )| X+ L
(Io az%|,, \ ( 0)03 ( 0) v v
" ’ 3
——8’(0—1)0)[a—3—4a4a+3i5 , n=3. (82)
v v v

The current is related to the first moment of the distri-
bution function

I(z,t)=e/dvm1/(z,v,t). (83)

In the Taylor series expansion of ¥, the velocity integrals
may be evaluated term by term. The » =0 term gives rise
to the dc component of the current, since

1y
e dvvyg=— | dvvd(v—v,)=1,.
[ devvo =32 [dovs(v=v)) =1y
The n =1 component gives no contribution, since
d I
/dvu Yo ——Oa(t)fdvt‘i’(v—uo)=0. (85)
Uy

The n=2 component of the distribution function has
terms which are proportional to a?(¢). However, these two
terms cancel exactly when we take the velocity moment of
the distribution function. We are then left with a contri-
bution to the RF current

efanny GH| (- - a2 a0

To evaluate the n = 3 component of the current, we take
the velocity moment of (82). Again, the terms proportional
to a3(¢) vanish and we obtain

33 ’ ’”
fdvvl \PO (Z”Zo) _10(50_:1_0_4)(2_20)3.

Vo 3,
(87)

(84)

Zg

]
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Fig. 4. Dependence of the first harmonic of the current (relative to the
dc current of the initial beam) found from a self-consistent solution of
the Vlasov equations on the coordinate x for small values of x. The
left-hand-side scale is for the amplitude. The right-hand-side scale is for
the phase. Both curves agree with the narrow-gap calculation (see text).

In performing the velocity integrals, we have made use of
the delta function identity

J8()8® (0~ u) do= (-1)" 25

(88)

Vo

Combining these results, we have that to n=3 in the
Taylor series expansion

Y A
I(z,t)—10{1+ » ( o) {

6 35 g
(89)

The term which is proportional to aa’ represents our first
explicit nonlinear contribution to the current. However, it
is clear that if a(¢) is a pure first harmonic, the quadratic
term in a can contribute only to the zeroth and second
harmonic. Hence, to the order considered, there is no
higher order contribution to the RF component of the
current.

We now turn to examine more carefully the z-depen-
dence of I,. The first harmonic of the current is related
only to the linear terms in a(¢).

For
U,
a(1) = ==L cos(wit + @) (90)
ml
we have
Ty el 2
Ii(z,t)= 203 ml (z—2,)
7 2w(z—z,)
+COS wt+(p+—2———3v—0—— . (91)

Hence, the derived formula predicts a quadratic z-depen-
dence of the amplitude and a linear z-dependence of the
phase of I,. These features are consistent with the numeri-
cal results presented in Fig. 4, where the self-consistent

- Ml(z — 20)3}.
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TABLEI

XK-5 - Klystron

eVp = 0.270000E+06 eV
o = 0 130000E+06 m/sec

Ip = 293.00 A

eVert == 0.384300E+04 eV (kest = 0.495415E-01)

3% Dirct Cavity ***+*

fo = 0.28560E+10 Hz i = 0.28442E410 Hz
¢; = 0006500 m

Q) = 2500

(R/Q); = 100.0 Obm

(f = fo)1 = 0 40E+07 Hz

Q1 = 161.84858

EEES Dpity AHEER

dy = 0059850 m
#*43+ Second Cavity ***%*

fo = 0.28560+10 Hz for, = 02871E+10 Hz
¢2 = 0.005000 m

Q2 = 20000
(R/Q); = 96.0 Ohm

(f = fo)2 = 0.90E+07 Hz

Qo == 572 54130

solution for the amplitude and the phase of the first
harmonic of the current are plotted as functions of the
dimensionless distance (32) inside the gap. The magnitude
of the amplitude and rate of phase change are also in
agreement. )

VIII. NUMERICAL RESULTS:
COMPARISON WITH THE SMALL-SIGNAL
APPROXIMATION

Here, we apply derived formulas to the SLAC XK-5
klystron. Table I contains its relevant parameters [7]. In
general, the small-signal approximation gives correct re-
sults for the first cavity. This is true due to small values of
both the input power and the length of the gap. In ad-
dition, the initial distribution of electrons at the cavity
entrance in velocities has a very small velocity spread and
is constant in time. Hence, in this case, the results obtained
by using the self-consistent solution agree with the small-
signal approximation [4]. To model the effect of an initial
velocity spread, the distribution function at the entrance is
assumed to be Gaussian in velocity with the dispersion o.
The Vlasov equations for the two cavities are solved
numerically. Fig. 5 illustrates the dependence of the first
cavity gap voltage k, . and its phase ¢;,. on o of the initial
Gaussian distribution. For ¢/v, smaller than 1072, the
result is the same as for a zero spread velocity beam
( ~ 8(v - vy)). At the same time, this is the condition of the
validity of the small-signal approximation.
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Fig. 5. Dependence of the field strength in the first cavity of the
klystron XK-5 found from the self-consistent solution of the Vlasov
equations on the velocity spread in the initial beam. The initial velocity
distribution is assumed to be Gaussian with the velocity v, and the
dispersion o. The left-hand-side scale is for the dimensionless amplitude
ky (curve a). The right-hand-side scale is for the phase @, (curve b).
The values of k; and ¢, found from the small-signal approximation
are 0.191 and 0.451, respectively.
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Fig. 6. The same as in Fig. 5 but for the second cavity of the klystron
XK-5 (the solid curves). The dashed curves represent the small-signal
approximation (see Section VI).
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Fig. 7. Dependence of the first harmonic of the current at the end of the
first cavity of the klystron XK-5. The left-hand-side scale is for the
amplitude in 4 (curve a). The right-hand-side scale is for the phase
(curve b).
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Fig. 8. The same as in Fig. 7 but for the second cavity of the klystron
' XK-5.
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Fig. 9. Dependence of the field strength k, in the second cavity and of
the first harmonic of the current at its exit on the RF excitation in the
first cavity. The left-hand-side scale is for k, (solid curve is for the
self-consistent solution, dashed curve is for the small-signal approxima-
tion). The right-hand-side scale is for the amplitude of the current ia 4.
Increase of the RF excitation (bottom scale is for the dimensionless
amplitude k) brings up to increase of the current harmonic on the
entrance to the second cavity. The upper scale represents the corre-
sponding harmonic amplitude in A4. ‘
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Fig. 10. The same as in Fig. 9 but in function of the drift length (m)
between the first and the second cavities. Increase of the drift length
(bottom scale) brings up to increase of the current harmonic on the
entrance to the second cavity. The upper scale represents the corre-
sponding harmonic amplitude in A4.

Similar results are found for the second (idle) cavity. Fig.
6 presents the amplitude and phase of the second gap
voltage, as functions of /v, (solid curves). Here again, the
small-signal approximation (dashed curves) gives correct
values for 6,0, <1072

Figs. 7 and 8 show the amplitudes and phases of the
current first harmonic at the exit of the first and at the exit
of the second cavities of the XK-5 klystron, respectively.

Fig. 9 illustrates the self-consistent (solid curves) and the
small-signal (dashed curves) solutions for the voltage and
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the current first harmonic for the entrance and the exit of
second gap as a function of the external excitation of the
first cavity, respectively. Increasing the external excitation
leads to an increasing I; at the entrance to the second
cavity, as is evident from this plot. Fig. 10 presents the
same quanitities as functions of the drift length between
the cavities.

IX. CONCLUSIONS

The approach suggested in this work proves to be cor-
rect. The results obtained agree to a great accuracy with
the small-signal approximation. In the limit of a narrow

. gap, the solution gives valid results both for the amplitude
and phase of the resonant harmonic of the beam current.

The next questions which should be addressed are how
useful and how convenient is the Vlasov approach in
general and with respect to the klystron problem in par-
ticular. The calculation of the particle distribution along
the klystron tube seems to be straightforward, although
substantial work needs to be done.

Nevertheless, the approach looks promising. One can
attempt to develop a one-dimensional model of a klystron
which will include all important physics of the beam dy-
namics in a multicavity system, including the interaction
with the output cavity and crossover of the electron trajec-
tories. The model takes into account the space-charge
effects in the cavities. The debunching effect of the space
charge in drift sections of the klystron can be evaluated in
a perturbative manner using the ballistic approximation as
the unperturbed solution. Such a model might be useful as
a fast and convenient tool for the klystron design. It can
also provide information (at least as the first guess) on the
amplitudes and the phases of the gap voltages for klystron
cavities. That might be useful as the input for more
elaborate numerical models of a klystron.

Further work is needed to extend the present formula-
tion into the region of relativistic velocities.

ACKNOWLEDGMENT

The authors are grateful to all members of the Numeri-
cal Analysis Group for the interest and stimulating discus-
sions of the problem. Our special gratitude goes to B.
Herrmannsfeld and P. Wilson for their encouragement and
help in our work.

REFERENCES

[1] A. A. Vlasov, “On the kinetic theory of an assembly of particles with
collective interaction,” J. Phys. (U.S.S.R), vol. 9, p. 25, 1945.

[2] See, for example, N. A. Krall and A. W. Trivelpiece, Principles of
Plasma Physics. New York: McGraw-Hill, 1973.

[3] T. H. Stix, The Theory of Plasma Waves. New York: McGraw-Hill,
1962.

[4] S. Kheifets, S. Yu, and J. Jaeger, “Analytic solution for the problem
of gridded gap-electron flow interaction,” SLAC report SLAC/AP-
13, SLAC, Stanford Univ., Jan. 1984.

[5] G. M. Branch, Jr., IRE Trans. Electron Devices, vol. ED-8, no. 3, p.
193, May 1961.

[6] M. Chodorow and C. Susskind, Fundamentals of Microwave Electron-
ics. New York: McGraw-Hill. :

[71 G. T. Konrad, “High power RF klystrons for linear accelerators,”
SLAC-PUB-3324, Apr. 1984,

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 6, JUNE 1985

Semyon A. Kheifets was born in Minsk, USSR,
on April 17, 1928. He received the M.S. degree in
physics from Moscow State University, Moscow,
USSR, and the Ph.D. degree in physics from the
Institute for Theoretical and Experimental
Physics, Moscow, in 1952 and 1961, respectively.

In 1953, he joined Yerevan Physics Institute
and worked there until 1973. He took a leading
part there in the design, construction, and put-
ting into operation of the 6-GeV Yerevan Syn-
chrotron. During this period, he did mainly theo-
retical work on particle dynamics in circular accelerators, including such
problems as longitudinal instabilities of particle motion due to coupling to
RF cavitites and losses of particles due to quantum fluctuations of
synchrotron radiation. At the time, he also served as a part-time Lecturer
in Physics at Yerevan State University. In 1975, he emigrated from the
USSR. During the years 1975-1977, he worked at DESY (German
Electron Synchrotron Laboratory) in Hamburg, West Germany. Since
1978, he has been a Staff Member of the Stanford Linear Accelerator
Center (SLAC), Stanford University, Stanford, CA. His main occupation
is the study of accelerator physics with respect to the development of the
positron-electron storage ring at SLAC and other projects.

Dr. Kheifets is a member of the American Physical Society.

Johamn Jaeger was born in Volkermarkt, Austria,
in 1953. He received the Dipl-Ing. degree in
applied mathematics and computer science in
1975 and the Dr. techn. degree in gasdynamic in
1979, both from the Technical University Graz,
Graz, Austria. His doctoral thesis was on com-
pressible fluid flow through two-dimensional
airfoil cascades.

From 1975-1980, be was a University Assis-
tant. at the Institute of Fluid Flow and
Gasdynamic at the Technical University Graz,
where he was engaged in gasdynamic problems. From 1980-1983, he was
a Post-Doctoral Fellow at the European Laboratory of Particle Physics,
CERN in Geneva, Switzerland, where he worked on accelerator physics
problems. Since 1983, he has been a Visiting Scientist at the Stanford
Linear Accelerator Center, SLAC, in Stanford, CA. His activities at
SLAC have been concerned mainly with accelerator theory, mathematical
simulation, modeling, and control of accelerators.

Simon S. Yu received the Ph.D. degree in theo-
retical physics from the University of Washing-
ton in 1970.

He has been a Research Physicist at the
Lawrence Livermore National Laboratory since
1977. From 1983 to 1984, he was a Research
Physicist at the Stanford Linear Accelerator
Center. He returned to Livermore in September
1984.



