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A Vlasov Description of the Gridded
Gap-Electron Flow Interaction

SEMYON A. KHEIFETS, JOHANN JAEGER, AND SIMON S. YU

.&tract — Self-consistent solutions of the system of Vlasov equations

are found for the case when the electric field in the gap does not depend on

the longitudinal coordinate, The solution is valid a) for an arbitrary

nonrelativistic particle distribution in velocity and time at the gap entrance,

b) for any gap len~ c) for any beam current, and d) for a broad class of

field dependence on time. In the region of applicability of the small-signal

approximation (small beam current, small transit angle of the gap), the
solution derived reproduces the resufts of the smafl-signaf approximation.

Numerical results for the input fdystron cavity and for an idler cavity are

given and compared with the calculations in small-signal approximation.

Possible applications of this formulation are discussed. In particular, we

argne that the Vlasov description provides a suitable framework for devel-

oping one-dimensionaf models of a multiple-cavity fdystron. These models

will be valid for huge signals, and are useful therefore for predicting the

performance of high-power kfystrons.

I. INTRODUCTION

T HE PRESENT STUDY is motivated by the modeling

of high-power klystrons. The two basic components of

a klystron are the resonant cavities and the drift spaces.

This paper addresses only the first of these two compo-

nents. Modeling of the drift spaces is deferred to future

work. In one particular case considered here of the drift

space between the first (externally powered) and the next

(idler) cavities, the ballistic approximation is used for the

particle motion. The formulation is not restricted to

klystron modeling, but is applicable to any problem involv-

ing the interaction of an electron beam with a resonant

cavity.

While the them-y of klystrons has been worked out in

detail in the small-signal limit, the problem remains largely

unsolved when the signals are large. In particular, the

hydrodynamic models of electron beams used to derive the

small-signal theories fail when particle trajectories cross

each other. In this paper, we employ a Vlasov description

of the electron beam to study the klystron problem. In the

Vlasov formulation, we follow the evolution of the electron

distribution function in phase space. The general frame-

work can naturally accommodate particle crossing, and the

beam dynamics are accurately described even when the

signals are large.
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While the Vlasov formulation is equivalent in principle

to a particle simulation, the mathematical structure of the

Vlasov equations makes it relatively easy to build in the

steady-state condition. Since in many klystron problems we

are interested mostly in the steady-state solution, the Vlasov

description is very convenient. This is an advantage that a

particle simulation does not share.

The self-consistent solution of the system of Vlasov

equations is found under the following assumptions:

a) one-dimensional (longitudinally) nonrelativistic par-

ticle flow,

b) electric-field uniform in the longitudinal coordinate

(gridcied gap).

The solution is valid a) for an arbitrary particle distribu-

tion of the flow entering the gap, b) for any gap size, c) for

all beam intensities, and d) for a broad class of time

dependence of the electric field in the gap, although we

will be studlying in detail the special case of a resonant

cavity with a single dominant frequency.

In Section II, the problem is formulated in terms of the

Vlasov equations [1]-[3]. In Section III, we present the

solution of the Liouville equation for a given gap field.

Solutions both for the initial value problem and for the

boundary value problem are given. At the end of the

section, we also write down the gap field excited by a

current source. The results of this section are combined in

Section IV to produce a self-consistent solution for the

Vlasov equations. In the limit of a small beam intensity

and/or a small electric field, the solution gives the same

results as the small-signal theory based on the hydrody-

namic beam models. This is shown in Section V for the

input klystron cavity and in Secticm VI for the second

(idler) cavity where the expressions for the gap voltage are

derived in the small-signal approximation. We have also

derived a general solution in the limit of small gap size

(Section VII). The last sections contain a numerical exam-

ple, comparison with known approximations, and some

conclusions as well as a discussion of possible applications

of the suggested solution to the klystron problem. The

results of the present paper in greater detail can be found

in [4].

II. THE VLASOV EQUATIONS

The most general and- exact description of the electro-

magnetic interaction of a particle flux with environment is

given by a system of equations describing the evolution of
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the particle phase space distribution function and the

electromagnetic field produced by particle charges. This

system of equations is referred to usually as the Vlasov

equations. For the nonrelativistic one-dimensional problem

considered here, the Vlasov equations are as follows.

Consider the motion of an electron in the gap in the

z-direction with the velocity v = dz/dt

du

%
= :E(t). (1)

Here, E(t) is the z-component of the electric field assumed

to depend on time only. The physical realization of such a

field takes place in a gridded gap, for example.

The first two integrals of this equation are

(2)

and

Z(t) =Zo+ u@J-;f:(t’-to)E(t’)dt’. (3)

The evolution of a flux of electrons inside the gap can be

described by a distribution function + of time t,coordi-

nate z, and velocity u: + = $ (z, U, t).The continuity equa-

tion in the phase space z, u is called the Liouville equation.

In our case, it looks like (SZ is an operator)

&’@#+u#+:E(t)~=O. (4)

Notice that u and z in this equation are considered as

independent variables.

The electric field E(t) in general can be produced by the

charges and currents of the flux, taking into account the

environment as well as by external sources. Introducing

the axial component of the vector potential A(7, t)and the

scalar potential +(7, t), we can describe the electromag-

netic field by the following Maxwell equations:

1 a2A a2A— .
C2 (%Z — az2

+j(F, t) (5)

(6)

E= 6’+ laA.

dz
(7)

c at

The axial current density j(?, t) in (5) in turn can be

expressed as a sum of external current density &Xt (pro-

duced for example by an external RF generator) and the

current density of the flux itself. In our case, we assume for

simplicity for the electron current density a uniform depen-

dence on the radial distance from the axis in the interval

O<r<b

j(z, r,t)=g(r)I(z, t)+j& (8)

{,

l\mb2, r < b
g(r)= o

r>O
(9)

l(z, t)=e~m duuij(z, u,t). (10)
—03

The system of equations (4)–(10) are the Vlasov equa-

tions. The solution of this system satisfying all the neces-

sary initial and boundary conditions is the self-consistent

solution of the problem. The search for such a solution and

the study of its properties are the subject of the present

paper.

HI. SOLUTION OF THE LIOUVILLE EQUATION

We solve first the Liouville equation (4) assuming for the

time being E(t) as a given function of time. It is known

that any function of the integrals of motion is the solution

of the Liouville equation. Hence, the function

(
+( Z, U,t)=tjo Z- u@o)+;~’(t’-~o)E(t’)di’,

0

=~~(t’)d+

is a solution of (4). JO(Z, U) corresponds to the initial

distribution at t = tO. It is easy to check by direct substitu-

tion that this function indeed satisfies (4). We will not do

this here since we are interested in the solution of the

boundary value problem rather than the initial value prob-

lem.

Suppose now that, at z = ZO, the distribution function is

given for all times and velocities

$O=+,(u,l). (11)

We are interested now in finding a solution + (z – ZO,u, t)

of (4) which goes into (1) for z - ZO. This solution will

describe the evolution of ~0 in z, u, and t. In particular, it

will give us the distribution function ~ ( 1, u, t)at the exit of

the gap z = ZO+ 1.

The aim is achieved in the following way. Introduce first

the implicit function e (z – ZO,u, t) as a solution of the

equation

F(z–zo, u,t, e)=z–zo-u’(t– e)

+ :j:(t’– f3)E(t’)dt’=O (12)

which satisfies the condition

e(o, u,t)=t. (13)

Introduce next the function

t
v(z–zo, u,t)=u–~

J
E(t’) dt’. (14)

~ e(z–zo, u,f)

From (3) it follows immediately

Tqo, u,r)=u. (15)

Then

v(z, ~,t)= t,(V(z–z,, ~,t), e(z-z,>~, t)) (16)

is such a solution of the Liouville equation (4), which goes

into the boundary value (11) when z ~ ZO. To prove this,

note first of all that

‘+ Ye.~+=~.gv+~

Then it is easy to see that

L7v= ;E(e).&?e.
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HereTherefore the only thing we have to show is that

Se=o. (17)

Indeed, if (17) is true then Y?*= O and (13) and (15)

provide that I/JIz=z, = ~O(u, t). To prove (17), find JZF

(which is O since F= O)

~~=v.~e=o.

Hence, (17) is true. In the particular case of a harmonic

electric field

Eh(l)=Eocos(tit+q) (18)

formula (14) gives

vh=u– ~[sin(tit + cp)-sin(ae, + cp)]. (19)

Elk satisfies the following equation (from (12)):

‘E:[COS(ut+ ~)-cos(ue, + ~)]z–zo–~(t–eh)–=

+ ~(t-e,)sin(tit +rp)=O. (20)

The solution (16) possesses an important feature of

periodicity. Namely, if +0( U, t) and E(I) are both periodic

in time (T is the period)

+()(u,t+~)=k)(u,t) (21)

E(t +T)=E(t) (22)

then

~(z, U,t+T)= yO(v(t+T), e(t+T)+T)

=*O(V(t)je(t)) =t(z, o,t) (23)

i.e., it is also periodic.

The correctness of this statement is very easy to see in

the simple case of the harmonic electric field with a =

2 m/ T. In this case, (20) is invariant under transformation

t - t+ T, e ~ e + T and so is (19). The proof for a more

general periodic function E(t) = ZnEn cos(n~t + %) is

more elaborate and we will not give it here.

The constants E, ~ in (18) are to be found self-con-

sistently from the solution of the Maxwell equation with

the current density as a source of the field defined in (8)

and (10). The key result is an impedance relation stated

below. A detailed derivation is presented in [4].

Define the gap voltage first harmonic for the fre-

quency u

Ul= – l(E1(r)) (24)

where (El (r)) is the average electric-field harmonic over

the beam cross section (El(r)) = l/rb2J#rdrdcp El(r) and

the gap impedance on the frequency u

u,

“=~
(25)

where (II ) is the first harmonic of the full current aver-

aged over the gap (1 is the gap length)

(1,) = +J-)izl,(z). (26)

is the first Fourier harmonic of the current

For the resonant cavity

where (R/Q ), Q, and f. are the shunt

I(z> t).

469

(27)

(28)

resistance, the

quality, and the proper frequency of the cold cavity.

IV. SELF-CONSISTENT SOLUTION OF THE VLASOV

EQUATIONS

We can rewrite (25) in the following way:

(29)

It is more ccmvenient to consider the current due to elec-

tron flow separately from other possible currents, e.g., the

current arising from the external generator.

Consider for example the first klystron cavity. Assume

that the cold cavity is excited by an external RF generator.

Then it is convenient to rewrite (29) in the following form:

(30)

where II is now the first harmonic of the electron flow

current 1( z, i!) defined in (10) and which in turn depends

on El. El .Xt is the first harmonic of the field excited in the

cold cavity by an external generator. It can be equal to zero

in the particular case of an unexcited cavity (for example,

the second klystron cavity).
The complex equation (30) constitutes two transcenden-

tal equations for the amplitude EO and the phase q (or for

the real and imaginary parts) of the first harmonic of the

field. The solution of these equations provides the self-con-

sistent field Ek = EOcos ( ~t + v) ((18)). Substitute this field

back into the solution (16) for the distribution function.

One gets now the self-consistent solution of the Vlasov

equation which satisfies the boundary value at z = ZO.

As an example, let us assume for the initial electron flow

a dc current with no velocity spread

+o(wz==o=-&-uo) (31)

where 10 is the dc electron current, and U. = ~- is

the initial velocity due to the dc gun voltage’ Vo. At this

point, it is convenient to introduce the following dimen-

sionless variables:

x=(z–zo)/l, O<x<l (32)

k = eEo/ma21. (36)
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Fig. 1. Phase trajectories of an electron with the dimensionless velocity Fig, 2, The sme as in Fig. 1 but for the field strength parameter
u = 1 entering the gap with the dimensionless field strength k = 0.2.
The ratio u/k is plotted versus x/k (the ratio of the dimensionless

k = 0.25. The onset of the particle crossover can be seen for large x/k.

coordinate x to the field strength k) for the different values of the field
phase T. 6 I I I I

According to (16), the distribution function for any later

coordinate and time is in the new variables 4

+(x, u,~)=~d(u- ksin~+ksin~,-uo) (37) u/k

2
where zzo= UO/ul and the function TO= TO(X, u, r) is de-

fined by equation

k=O.33
.......%..
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....””

~ 4
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3 lr/2

I I I Ix–u(T–~O)+ k[cos~–cos ~O+(~–~O)sin~] =0. o

(38) o 10 20
x/k

From the distribution function (37), one can find the Fig. 3. The same as in Fig. 1 but for the field strength parameter

beam density current k = 0.33. The crossover is fully pronounced now.

1(x,7) = fj~ duu8(u– ksin7+ksin70-uO) Figs. 1-3 are the phase plots of u/k versus x/k for
—w k = 0.2, 0.25, and 0.33, respectively, for different values of

=10
Z(r) the time parameter ~. One sees the onset of the crossover

(39) of the particle trajectories for the large gap voltage (Fig. 3).luO+k[7- ~O(ii)]cos~O(ii)l

where ii = Z(~) is the solution of the equation V. SMALL-SIGNAL APPROXIMATION:

THE INPUT KLYSTRON CAVITY
ii+ksin~O( Z)=uO+ksin~. (40)

It is instructive to study the previous results in the limit

The first harmonic of 1(x, T) is of a small electric field ‘and ~o compare them with the

I
known results from the small-signal theory.

!

27r ~Tii(7)e-iT
ll(x) = +e19 (41) In the small-signal limit, the lowest power of the param-

0 luO+k[~– ~o(ti)]cos~O(Zi)l. eter k should be retained in all expansions in power series.

Calculate now the average over x of this current and
In variables (32)-(36), equations (19) and ~20) for ~ =

Vh/ad and TOlook like
substitute into (30). Note that El = Eoe ‘9/2 and El .Xt =

Eoext /~ ti=u-ksin~+ksinro (43)

2Z1
k = k~xte-zv – —

eIo

J
1dx x–u(r–~o)+ k(cos~–cos~o +rsin~–rosin~)=O.

12 27rm6i2 o

J

(44)
2?7 drfi(r)e-i’

(42) The solutions of (43) and (44) to the first order in k areo luo+k(~–~o)cos~ol

where ke,t = eEoeX,/ma21. The complex equation (42) is
()

ii=u-ksinr+ksin T–Z (45)

equivalent to two transcendental equations which define
u

.
the amplitude E. and the phase ~ (in respect to the

external field) of the field in the gap. ‘O=’-:+:[cos(’-:coso:sinsl’46)
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The terms independent of k here give the ballistic ap-

proximation. The last terms in (31) and (46) represent the

influence of the electric field.

Let us assume for simplicity that the dist@bution func-

tion of the electron flow on the entrance of the gap is (31).

A. Coupling Coefficient

Let us first of all, find the expression for the coupling

coefficient p as it follows from our solution. One can

define p as the ratio of the average kinetic energy change

to the maximum of the energy gain in the gap [5]. Calculate

first the average (uz) as the function of x

J
m ~uu’’[”-ksh’+ks+-a-ud

(u’) = -:

‘U8 ~-ksin’+ksin(’-+’]“/[–co
(47)

To the first order in k for x=1

(u2)l=:’+2kuo[sh’-sin[T-i)l’48)
From here we get (+ denotes r + l/2uo]

(49)

where O = l/2uo = 01/2 UO is the half of the gap transit

angle.

B. Beam Loading

Now, let us consider the beam loading by the electron

flow as it follows from our solution. We need now the

expression for the beam current density in the small-signal

approximation. The charge and the current densities both

can found by integration of (37)

10 w
p(x,7)=—

‘u’ U-ksin’+ksin(’-:)-uolJ[U,(J . ~

(50)

equation

i?p
~+-jg=o, (54)

As one sees from (52) in the small-signal approximation,

the current density besides the dc component contains only

the first harmonic. Expression (52) can be obtained con-

versely by expanding expression (39) in the power series in

parameter k.

Using the definition (17), the first harmonic of the beam

current density is

k.x
II(x) = loeiq— ( Lc.s2_-i

2tf, ‘ln~ – zf~ u,

+iwsz+i~
)

sin: . (55)
U.

This expression is the same as one obtained from formula

(2.1) of [5], assuming EZ = const. It also coincides with the

corresponding expression for iU in [6].

Let us rewrite (30) in variables (32)-(35)

E1=+[I1.X-LIAI1(X)] (56)

Here, ll,Xt is the first harmonic of the external current

exciting the cavity. Substitute now (55) into (56) and take

into account that El = Eoe’~/2, 11,,t = 10=,/2. Then

E.= :Iomte-iw _ 3 ~ Iok(B+iA) (57)

where

B = jl’UO
(

sin @
du(sinu – ucosu) = 40sin0 ~ –cosd

o )

(58)

A = – jl’uOdu(l–cosu–usinu)
o

(kin e

)
=48cose ~–cosf3 . (59)

[
I(x, r)=~j_*@duu8 u–ksin~+ksin (7-3-”01Herej O = l/2uo = U1/2uo is half of the transit angle for

the gap. Solving (57) in respect to E, (see definition of k in

(51) (36)), one finds

Performing the integrations, we find to the first order IoeXte-‘W
in k E,=

~(x~)=~o(l+~[sinr-sin(,-~)] ‘[*+elO~l~A)] “0)
Substitute now expression (18] for Z1

( )}—ycos T—z (52) E,_ (~/Q) &e-i9
U. u,

$1{1-5COS(T-;}.p(x, T)=— ‘M; ;)+ ’oyy+ti’]” (61,
(53)

From formula (61) immediately follow the usi.ud expres-

It is easy to see that (52) and (53) satisfy the continuity sions for the Maded quality Q= and the shifted frequency
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fL of the gap

1 _ ~+ 10(R/Q) sind sine _cos O

(
.—

QL-Q z~o o ~ )
(62)

[

lo(R/Q) COSO sinO

( )]
f~=fo 1– ~v ~ ~–cos~ . (63)

o

VI. SMALL-SIGNAL APPROXIMATION:

SECOND (IDLER) KLYSTRON CAVITY

Let us now proceed to the second (idler) klystron cavity.

We want to study how it is excited by an electron flow

perturbed by the action of the field in the first cavity and

bunched in the drift tube with the length dl between the

first and the second cavity. We neglect in the present

formulation the debunching effects of the space charge in

the drift tube and use the ballistic approximation for the

particle motion inside the drift tube.

We use the solution for the field in the first cavity kl to

obtain the distribution function of the electron flow at its

exit. For the initial distribution function defined in (31), we

have (see expression (45) for x =1)

(64)

where rl = tit + ql~, U = V/(.d[l, U. = Vo/(Jll. kl =

eE1 /m U211 and rpl constitute the solution of (42). The

distribution function at the entrance of the second cavity is

obtained from (64) in a ballistic approximation

‘ksin(’+)-u’i‘6’)
To obtain the distribution function at any place x = z/n

inside the second gap (with the length Iz ) according to

(16), one should substitute in (65) u ~ V and t +6. Or, in

the variables u, ~ (see expressions (45) and (46))

() x
u*u2=u —k2sinr2+kz Sin T2—; (66)

k2

()

k2 kzx
T+ ’ro=72— :+; COS q-; –;cos T2– —

U2
sin T2.

(67)

Here, ~z = ut + 92 and kl = eEz/mu211. k2, q2 should be

found from the solution of (42) for the second gap, in

which one should put keXt = O. In the linear approximation

in kl and k2, we get

[’ ()
+(x, u,r)=~8 u–k2sinr2+k2sin r2–~

(

Xll + dl
–klsin T2+ff1-V2– ~u

1 )

(

Xll + 11 + dl

+klsin T2+171-92– ~u
)1

—uo.
1

(68)

The charge (50) and current (51) densities both can be

found from (68)

q(x,72)=
*{1-ycos(T2-:)+ kl(:;’1’

(

Xll + dl
‘COS T2+T1–~Z– ~u

10 )

kl(xll+ll+dl)—
llu;

(

Xll + /1 + dl
‘COS T2+~1–~2–

112.40 ))

(69)

(

k2 k2

()
l(X, T2)=lo l+~sin~2–~ sin r2–~

(

X1l + dl
+~sin 72+91–92– ~luo

)

kl

(

X/l + /1 + dl
–—sin 72+rp–rpz–

U. 11240 )

k2x

()

kl(xll + dl)—— Cos 72—3 +
u; ?.40 llu;

(.Cos T2+ rpl – 92 –

( Xll + 11+ dl
.Cos 72+rp1-cp2–

llUO )}
. (70)

Expressions (69) and (70) satisfy the continuity equation

(54). Substituting (70) into (42), one obtains for U2 = 12E2

and cp2the following complex equation:

u2ew2 = –

eIoU1eiq’ ( B12 + iA1z )

[ 1
(71)

~+
eIo(B2+iA2)

mu2111z ~2
mu2122

where Ule ‘~’ is the first gap voltage, Zz is the second gap

cold unloaded impedance, B2 and A z are the coefficients

defined in (58) and (59), respectively, in which 6 should be

substituted by 6Z = 12/211uo. The coefficients B12 and A12

are defined as follows:

‘12=2c0s(202+iH-2c0
‘(2’2+asin(202+a-*sin+i

(–2COS 282+$
10 ‘$J+2c0s(i%+$)

(

dl

)(

+~ sin 20+ dl 1

– 282+ llUO U. 2 llUO + ~ )

‘(i%+i)sin(f%+a(72)
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(A12 = 2sin 202+ ~
10 ‘i)”2sin(i%+a

-2sin(2e2+*)+2sin$i
‘(202+*)c0s(2e2+iwi-cOsiko

(73)

In deriving expressions (69)–(70), in addition to the

small-signal approximation conditions kl/ U. <1 and

k2/uo <1, we assumed also that the length of the drift

tube is small enough so that the inequality kldl/ Uoll <1 is

still valid.

Expression (71) has a simple meaning. Namely, the first

harmonic of the current at the entrance to the cavity plays

the roll of the external excitation current, while the first

h~monic of the current produced by the gap voltage loads

the cavity by changing its parameters exactly in the same

way as it is described by expressions (62) and (63).

VII. NARROW-GAP APPROXIMATION

In this section, we derive an analytic solution to the

Vlasov equation in the limit of a narrow gap. The expan-

sion is not restricted to small signals, but the result is

consistent with small-signal theory in the proper limit.

The assumption of a narrow gap allows us to expand the

distribution function into a Taylor series. We have in

general

t)(z)= ~:o+~(Z-zo)n. (74)

Zo

For a narrow gap, the solution is given by the first few

terms of the series. We will work out the example of an

initial cold distribution with

*O(M)=$$(U-UO) (75)

for which the general solution is given by

$(z>u,t)=:8(u–/’a()dtduo)uo)(76)
9

where 0 is given by

z–zo=u(t –e)– Jr(t’–e)a(tqdt’ (77)
e

and a(t) = eE(t)/rn (see (12)). IWe will perform the ex-

pansion of (76) up to n =3. The first term in the series

(n= O) is given of course by ~o(u, 1) as defined in (75). To

obtain the n = 1 term, we need to evaluate

dea+ Ma(e) ___
z= (?V

Differentiating (77), we obtain

8Z
J()36=-V+ y ‘t’”

The coefficient of the n =1 term is then given by

(78)

(79)

a+

az .0=
– *i3’(v– vo)a(t)/u, n=l. (80)

The coefficient of the n = 2 term is proportional to the

second derivative of ~ and is evaluated to be

(-)evo ip+ a2(t)

10
— =&’(u-vo)-
az2 =0 V2

[

a’(t) a2(t)

1
+&(v-uo) ~–--J- , n= 2. (81)

Note that 8’ refers to the derivative of the delta function

with respect to velocity, while’ a’(t ) is a derivative of the

acceleration with respect to time. A superscript with n

primes refer to the n th derivative. Finally, the’ n = 3 coeffi-

cient is evaluated to be

(-)-evo aj~

10 [1
-8’’’(v o):+3&3(v(vo)o) $+$

az3 .O=

[

4a’a + 3a3
–a’(v–vo) ;–— —

1V4 v’ ‘
n=3. (82)

The current is related to the first moment of the distri-

bution function

I(z, t)=ejdvvtJ(z, u,t). (83)

In the Taylor series expansion of ~, the velocity integrals

may be evaluated term by term. The n = O term gives rise

to the dc component of the current, since

(?fduu+o= $~duud(u– Uo) =lo. (84)

The n = 1 component gives no contribution, since

J
a~o

e dvv — 4a(t) jdv8’(v– VO)=O. (85)
az .O=–vo

The n = 2 component of the distribution function has

terms which are proportional to a 2( t ). However, these two

terms cancel exactly when we take the velocity moment of

the distribution function. We are then left with a contri-

bution to the RF current

e dvv~ a2qo

/ 23 (Z-zoy=k 2V3 a’(t)(z – ZO)2. (86)

Zo o

To evaluate the n = 3 component of the current, we take

the velocity moment of (82). Again, the terms proportional

to a 3( t ) vanish and we obtain

~ dvv~ a3~o

J
63 (Z- ZO)3=10

Zo (%% Z-ZJ3

(87)
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0 0.4 0.8
x

Fig. 4. Dependence of the first harmonic of the current (relative to the
dc current of the initial beam) found from a self-consistent solution of
the Vlasov equations on the coordinate x for small values of x. The
left-hand-side scale is for the amptitude. The right-hand-side scale is for
the phase. Both curves agree with the narrow-gap calculation (see text).

In performing the velocity integrals, we have made use of

the delta function identity

Jdww- k))~~= (-on~l ~ (88)
Oo

Combining these results, we have that to n = 3 in the

Taylor series expansion

{
qz, t)=Io 1+

[g., %Z-ZJ31

~(z-zo)’- ~-
0

(89)

The term which is proportional to au’ represents our first

explicit nonlinear contribution to the current. However, it

is clear that if a(t) is a pure first harmonic, the quadratic

term in a can contribute only to the zeroth and second

harmonic. Hence, to the order considered, there is no

higher order contribution to the RF component of the

current.

We now turn to examine more carefully the z-depen-

dence of Il. The first harmonic of the current is related

only to the linear terms in a(t).
For

a(l) =#cos(4dt+cp) (90)

we have

Il(z, t)=z ~~(z-zo)’

o

( 2&!(z-zo)
.Cos &u+lp+:–

)3U0 “
(91)

Hence, the derived formula predicts a quadratic z-depen-

dence of the amplitude and a linear z-dependence of the

phase of Il. These features are consistent with the numeri-

cal results presented in Fig. 4, where the self-consistent

TABLE I

XC-5 - Klystron

eVO = 0.27WOOE+06 ev

o = O 13WOOE+OB m/gw

10 = 293.00A

eVezt = 0.384sooE+04eV (k~, = 0.495415E01)

. ..8* F~~t c=vi~y 9**..

fII = O.2S56OE+1OHz flL = 0.28442E+I0 Hz

Cl = O0085Wm

~1 = 2500 ~,f, = 161.84656

(R/Q)l = 100.0 Ohm

(J – fo), = O 40E+07 Hz

●**** ~,fi *****

dl = 0059850 m

***** Second Cavity *****

fO = 0.28560+10 Hz J2L = O 2S71E+1OW

tz = 0.W5W0 m

Q2=20w0 QZL= 57254130

(R/Q)z = 96.0 Ohm

(/– fo)z = o.9oE+07 Hz

solution for the amplitude and the phase of the first

harmonic of the current are plotted as functions of the

dimensionless distance (32) inside the gap. The magnitude

of the amplitude and rate of phase change are also in

agreement.

VIII. NUMERICAL RESULTS:

COMPARISON WITH THE SMALL-SIGNAL

APPROXIMATION

Here, we apply derived formulas to the SLAC XK-5

klystron. Table I contains its relevant parameters [7]. In

general, the small-signal approximation gives correct re-

sults for the first cavity. This is true due to small values of

both the input power and the length of the gap. In ad-

dition, the initial distribution of electrons at the cavity

entrance in velocities has a very small velocity spread and
is constant in time. Hence, in this case, the results obtained

by using the self-consistent solution agree with the small-

signal approximation [4]. To model the effect of an initial

velocity spread, the distribution function at the entrance is

assumed to be Gaussian in velocity with the dispersion u.

The Vlasov equations for the two cavities are solved

numerically. Fig. 5 illustrates the dependence of the first

cavity gap voltage kl,c and its phase rpl,c on u of the initial

Gaussian distribution. For o/v. smaller than 10-2, the

result is the same as for a zero spread velocity beam

( - 8(v – v,)). At the same time, this is the condition of the

validity of the small-signal approximation.
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Fig. 5. Dependence of the field strength in the first cavity of the
klystron XK-5 found from the self-consistent solution of the Vlasov
equations on the velocity spread in the initiaf beam. The initiaf velocity
distribution is assumed to be Gaussian with the velocity UOand the
dispersion u. The left-hand-side scale is for the dimensionless amplitude
kl (curve a). The right-hand-side scale is for the phase ~1 (curve b).
The values of kl and ql found from the smafl-signaf approximation
are 0.191 and 0,451, respectively.
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Fig. 9. Dependence of the field strength kz in the second cavity and of

the first harmonic of the current at its exit on the RF excitation in the
first cavity. The left-hand-side scale is for k2 (solid curve is for the

self-consistent solution, dashed curve is for the small-signal approxima-
tion). The right-hand-side scale is for the amplitude of the current i,l A.
Increase of the RF excitation (bottom scale is for the dimensionless
amplitude kext ) brings up to increase of the current harmonic on the
entrance to the second cavity. The upper scale represents the corre-
sponding hanmonic amplitude in A.
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Fig. 6. The same as in Fig. 5 but for the second cavity of the klystron
XK-5 (the solid curves). The dashed curves represent the smafl-signal

approximation (see Section vi).

I ,0,,,, (A)
3.2 6.0 8.8

4,0 10

z

5;

o

1’/
3.0

1,3

//

/

kz
/

/
/ k2

/

/
/

/

1“’’”1 11111111111!111)111I\llllll I 1111111

0.200

0.195
II

0.190

0.185

0.180

1.2 + 2.0

+,

1.1

1,0
I.0

llld 1 11!111!11 1 11111111 111111111LLuLd
,.-4 ,.-3 ,.-2 ,.-1 ,.-O

Clvo o I I

Fig. 7. Dependence of the first harmonic of the current at the end of the
o 0.05 0. I 0.15

first cavitv of the klystron XK-5. The left-hand-side scale is for the
d (m)

(curve a). The right-hand-side scale is for the phase Fig. 10. The same as in Fig. 9 but in function of the drift length (m)
between the first and the second cavities. Increase of the drift length

amplitude” in A

(curve b).
(bottom scale) brings up to increase of the current harmonic on the
entrance to the second cavity. The upper scale represents the corre-

sponding harmonic amplitude in A.

1.449

1.448 Similar results are found for the second (idle) cavity. Fig.

6 presents the amplitude and phase of the second gap
‘“447 + I voltage, as functions of u/vO (solid curves). Here again, the
1.446 small-signal approximation (dashed curves) gives correct

1.445 values for u/v. S 10 – 2.
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Figs. 7 and 8 show the amplitudes and phases of the

,.-4 ,.-3 ,.-2 ,.-1 current first harmonic at the exit of the first and at the exit

VA. of the second cavities of the XK-5 klystron, respectively.
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Fig. 8. The same as in Fig. 7 but for the second cavity of the klystron Fig. 9 illustrates the self-consistent (solid curves) and the

‘ XK-5. small-signal (dashed curves) solutions for the voltage and
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the current first harmonic for the entrance and the exit of

second gap as a function of the external excitation of the

first cavity, respectively. Increasing the external excitation

leads to an increasing 11 at the entrance to the second

cavity, as is evident from this plot. Fig. 10 presents the

same quantities as functions of the drift length between

the cavities.

IX. CONCLUSIONS

The approach suggested in this work proves to be cor-

rect. The results obtained agree to a great accuracy with

the small-signal approximation. In the limit of a narrow

gap, the solution gives valid results both for the amplitude

and phase of the resonant harmonic of the beam current.

The next questions which should be addressed are how

useful and how convenient is the Vlasov approach in

general and with respect to the klystron problem in par-

ticular. The calculation of the particle distribution along

the klystron tube seems to be straightforward, although

substantial work needs to be done.

Nevertheless, the approach looks promising. One can

attempt to develop a one-dimensional model of a klystron

which will include all important physics of the beam dy-

namics in a multicavity system, including the interaction

with the output cavity and crossover of the electron traj ec-

tories. The model takes into account the space-charge

effects in the cavities. The debunching effect of the space

charge in drift sections of the klystron can be evaluated in

a perturbative manner using the ballistic approximation as

the unperturbed solution. Such a model might be useful as

a fast and convenient tool for the klystron design. It can

also provide information (at least as the first guess) on the

amplitudes and the phases of the gap voltages for klystron

cavities. That might be useful as the input for more

elaborate numerical models of a klystron.

Further work is needed to extend the present formula-

tion into the region of relativistic velocities.
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